Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes
نویسندگان
چکیده
Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM) data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights OPEN ACCESS Remote Sens. 2015, 7 10833 the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.
منابع مشابه
ZONING OF CLIMATE-AGRICULTURAL DRYLAND WHEAT USING GIS CASE STUDY: HAMEDAN PROVINCE
Climate and the required parameters for agricultural products are the important factors of production. We can determine potential facilities in different areas and consider the maximum tapping through agricultural meteorology. Due to drylands potentials in Hamedan province, we conducted a comprehensive survey based on 20 years (1995-1995) climatic elements of 9 main and supplementary synoptic s...
متن کاملEstimation of effective precipitation for winter wheat in different regions of Iran using an Extended Soil-Water Balance Model
Estimated Effective Precipitation (Pe) in dryland areas is an essential element of water resource management. Itrepresents the amount of precipitation available in the crop root zone to meet the needs of evapotranspiration. Thecurrent study compared different approaches for estimating Pe in different climatic zones of Iran. A two-layer soil–water balance (SWB) model was adopted based on the pro...
متن کاملGlobal Synthesis of Drought Effects on Maize and Wheat Production
Drought has been a major cause of agricultural disaster, yet how it affects the vulnerability of maize and wheat production in combination with several co-varying factors (i.e., phenological phases, agro-climatic regions, soil texture) remains unclear. Using a data synthesis approach, this study aims to better characterize the effects of those co-varying factors with drought and to provide crit...
متن کاملVariable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.
Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to...
متن کاملCommunity-level phenological response to climate change.
Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015